P-spline Varying Coefficient Models for Complex Data
نویسنده
چکیده
Although the literature on varying coefficient models (VCMs) is vast, we believe that there remains room to make these models more widely accessible and provide a unified and practical implementation for a variety of complex data settings. The adaptive nature and strength of P-spline VCMs allow a full range of models: from simple to additive structures, from standard to generalized linear models, from one-dimensional coefficient curves to two-dimensional (or higher) coefficient surfaces, among others, including bilinear models and signal regression. As Pspline VCMs are grounded in classical or generalized (penalized) regression, fitting is swift and desirable diagnostics are available. We will see that in higher dimensions, tractability is only ensured if efficient array regression approaches are implemented. We also motivate our approaches through several examples, most notably the German deep drill data, to highlight the breadth and utility of our approach.
منابع مشابه
Long-term Iran's inflation analysis using varying coefficient model
Varying coefficient Models are among the most important tools for discovering the dynamic patterns when a fixed pattern does not fit adequately well on the data, due to existing diverse temporal or local patterns. These models are natural extensions of classical parametric models that have achieved great popularity in data analysis with good interpretability.The high flexibility and interpretab...
متن کاملEstimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models
The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...
متن کاملVarying-Coefficient Functional Linear Regression Models
We propose in this work a generalization of the functional linear model in which an additional real variable influences smoothly the functional coefficient. This leads us to build a varying-coefficient regressionmodel for functional data. We propose two estimators based respectively on conditional functional principal regression and on local penalized regression splines and prove their pointwis...
متن کاملPenalized spline smoothing in multivariable survival models with varying coefficients
The paper discusses penalised spline (P -spline) smoothing for hazard regression of multivariable survival data. Non-proportional hazard functions are fitted in a numerically handy manner by employing Poisson regression which results from numerical integration of the cumulative hazard function. Multivariate smoothing parameters are selected by utilizing the connection between P -spline smoothin...
متن کاملA simultaneous confidence corridor for varying coefficient regression with sparse functional data
We consider a varying coefficient regression model for sparse functional data, with time varying response variable depending linearly on some timeindependent covariates with coefficients as functions of time-dependent covariates. Based on spline smoothing, we propose data-driven simultaneous confidence corridors for the coefficient functions with asymptotically correct confidence level. Such co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009